2,437 research outputs found

    Comment on ``Bethe Ansatz Results for the 4f-Electron Spectra of a Degenerate Anderson Model ''

    Full text link
    In a recent letter, Zvyagin calculates the density of states for 4f electrons coupled to a conduction band in the framework of the Bethe ansatz (BA) solution for the degenerate Anderson model. It is claimed that the results qualitatively disagree with the results obtained for the same model but using a variational approach. Even the high energy feature in the f-spectral function near the 4f-level energy ef, i.e. the ``normal'' ionization peak (NIP), is argued to be qualitatively different in the two approaches. In the following we point out that this is not the case.Comment: 1 page, RevTeX, no figur

    Phonon spectral function for an interacting electron-phonon system

    Full text link
    Using exact diagonalzation techniques, we study a model of interacting electrons and phonons. The spectral width of the phonons is found to be reduced as the Coulomb interaction U is increased. For a system with two modes per site, we find a transfer of coupling strength from the upper to the lower mode. This transfer is reduced as U is increased. These results give a qualitative explanation of differences between Raman and photoemission estimates of the electron-phonon coupling constants for A3C60 (A= K, Rb).Comment: 4 pages, RevTeX, 2 eps figur

    Two Component Heat Diffusion Observed in CMR Manganites

    Full text link
    We investigate the low-temperature electron, lattice, and spin dynamics of LaMnO_3 (LMO) and La_0.7Ca_0.3MnO_3 (LCMO) by resonant pump-probe reflectance spectroscopy. Probing the high-spin d-d transition as a function of time delay and probe energy, we compare the responses of the Mott insulator and the double-exchange metal to the photoexcitation. Attempts have previously been made to describe the sub-picosecond dynamics of CMR manganites in terms of a phenomenological three temperature model describing the energy transfer between the electron, lattice and spin subsystems followed by a comparatively slow exponential decay back to the ground state. However, conflicting results have been reported. Here we first show clear evidence of an additional component in the long term relaxation due to film-to-substrate heat diffusion and then develop a modified three temperature model that gives a consistent account for this feature. We confirm our interpretation by using it to deduce the bandgap in LMO. In addition we also model the non-thermal sub-picosecond dynamics, giving a full account of all observed transient features both in the insulating LMO and the metallic LCMO.Comment: 6 pages, 5 figures http://link.aps.org/doi/10.1103/PhysRevB.81.064434 v2: Abstract correcte

    Comment on ``Collapse of Coherent Quasiparticle States in θ\theta-(BEDT-TTF)2_2I3_3 Observed by Optical Spectroscopy''

    Full text link
    Recently, Takenaka et al. reported that the resistivity rho(T) of theta-(BEDT-TTF)_2I_3 (theta-ET) exceeds the Ioffe-Regel resistivity by a factor of 50 at large temperatures T (``bad metal''). This was ascribed to strong correlation. We argue that the optical conductivity sigma(omega) implies that correlation is not very strong, and that correlation gives no general strong suppression of sigma(omega). The large rho(T) is primarily due to a downturn in sigma(omega) at small omega, earlier emphasized by Takenaka et al. as the explanation for bad metal behavior of high-T_c cuprates. We argue, however, that for cuprates strong correlation is the main effect. The data of Takenaka et al. puts theta-ET in a new class of bad metals.Comment: 1 page, 1figur

    Metal-insulator transitions: Influence of lattice structure, Jahn-Teller effect, and Hund's rule coupling

    Full text link
    We study the influence of the lattice structure, the Jahn-Teller effect and the Hund's rule coupling on a metal-insulator transition in AnC60 (A= K, Rb). The difference in lattice structure favors A3C60 (fcc) being a metal and A4C60 (bct) being an insulator, and the coupling to Hg Jahn-Teller phonons favors A4C60 being nonmagnetic. The coupling to Hg (Ag) phonons decreases (increases) the value Uc of the Coulomb integral at which the metal-insulator transition occurs. There is an important partial cancellation between the Jahn-Teller effect and the Hund's rule coupling.Comment: 4 pages, RevTeX, 3 eps figure, additional material available at http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/fullerene

    Mott Transition in Degenerate Hubbard Models: Application to Doped Fullerenes

    Full text link
    The Mott-Hubbard transition is studied for a Hubbard model with orbital degeneracy N, using a diffusion Monte-Carlo method. Based on general arguments, we conjecture that the Mott-Hubbard transition takes place for U/W \propto \sqrt{N}, where U is the Coulomb interaction and W is the band width. This is supported by exact diagonalization and Monte-Carlo calculations. Realistic parameters for the doped fullerenes lead to the conclusion that stoichiometric A_3 C_60 (A=K, Rb) are near the Mott-Hubbard transition, in a correlated metallic state.Comment: 4 pages, revtex, 1 eps figure included, to be published in Phys.Rev.B Rapid Com

    Apparent electron-phonon interaction in strongly correlated systems

    Full text link
    We study the interaction of electrons with phonons in strongly correlated solids, having high-T_c cuprates in mind. Using sum-rules, we show that the apparent strength of this interaction strongly depends on the property studied. If the solid has a small fraction (doping) delta of charge carriers, the influence of the interaction on the phonon self-energy is reduced by a factor delta, while there is no corresponding reduction of the coupling seen in the electron self-energy. This supports the interpretation of recent photoemission experiments, assuming a strong coupling to phonons.Comment: 4 pages, RevTeX, 2 eps figure
    • …
    corecore